skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qian, Kuanren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Abstract We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called “NeuronGrowth_IGAcollocation”. Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks. 
    more » « less
  5. null (Ed.)
    From providing nutrition to facilitating social exchanges, food plays an essential role in our daily lives and cultures. In HCI, we are interested in using food as an interaction medium and a context of personal fabrication. Yet, the design space of available food printing methods is limited to shapes with minimal overhangs and materials that have a paste-like consistency. In this work, we seek to expand this design space by adapting support bath-assisted printing to the food context. The bath scaffolds the embedded materials and preserves shapes during the printing processes, enabling us to create freeform food with fluid-like materials. We provide users guidelines for choosing the appropriate support bath type and processing methods depending on the printing material's properties. A design tool suite and application examples, including confectionery arts, 4D printed food, and edible displays are also offered to demonstrate the enabled interaction design space. 
    more » « less